
Journal of Biomolecular NMR, 8 (1996) 445-452 445
ESCOM

J-Bio NMR 387

Gifa V. 4: A complete package for NMR data set processing

Keywords:

J e a n - L u c Pons, Th6r6se E. Mal l i av in a n d M a r c A. Delsuc*

Centre de Biochimie Structurale, INSERM U414, CNRS UMR 9955, Universitk Montpellier 1, Facultd de Pharmacie,
15 Avenue Charles Flahault, F-34060 Montpellier, France

Received 2 April 1996
Accepted 9 August 1996

Linear prediction; FFT; Maximum entropy; Signal processing; MaxEnt; Software; Command language; Graphic user interface

Summary

The Gila program is designed for processing, displaying and analysing 1D, 2D and 3D NMR data sets.
It has been constructed in a modular fashion, based on three independent modules: a set of commands
that perform all the basic processing operations such as apodisation functions, a complete set of Fourier
transforms, phasing and baseline correction, peak-picking and line fitting, linear prediction and maxi-
mum entropy processing; a set of command language primitives that permit the execution of complex
macro commands; and a set of graphic commands that permit to build a complete graphic user inter-
face, allowing the user to interact easily with the program. We have tried to create a versatile program
that can be easily extended according to the user's requirements and that is adapted to a novice as well
as an experienced user. The program runs on any UNIX computer, with or without graphic display, in
interactive or batch mode.

Introduction

The development of N M R spectroscopy in the past few
years has been marked by a growth in the size of the data
sets and the outburst of many new processing methods.
The increase of computer system power and the actual
capability of data storage have contributed to this evol-
ution. Consequently, the modem spectroscopist requires
N M R processing programs that have to meet some new
features; programs have to adapt to different data set
sizes and have to be extensible in order to follow the
evolution of N M R spectroscopy methods. Moreover, they
have to contain fast processing protocols and must be
easy to use with the help of a comfortable graphic inter-
face. All these aspects have been respected during the
conception of the Gifa software. The previous versions of
Gifa were designed essentially for classical as well as
maximum entropy processing of 1D, 2D and 3D N M R
data sets (Delsuc, 1989). The new version presented here
includes some new processing tools but is mostly char~
acterised by a complete rebuilding of the user interface,
including the command language as well as the graphic
interface. According to the requirements designed before,
the Gifa V. 4 software permits the processing of data sets

unlimited in size. A modular graphic interface and a
powerful command language for additional developments
have been made available.

Methods

The Gifa software has been written in the C and Fort-
ran programming languages, using the X11R5 and Motif
1.2 graphic libraries. These choices make Gifa a portable
software. Gifa runs on different UNIX computer systems
such as Hewlett-Packard, Silicon Graphics, IBM, Linux-
PC or Sun, with or without graphic display, in interactive
or batch mode. During start-up, Gifa tests some hard-
ware features (like the presence of an X-window connec-
tion) in order to determine the running style.

The Gifa program is set up as an interactive program,
which gets commands from the user in an interactive
manner and executes the corresponding actions. Some
commands may prompt the user for additional parame-
ters.

Basic data processing

The basic data processing commands are designed so
as to correspond to elementary processing tasks, which

*To whom correspondence should be addressed.

0925-2738/$ 6.00 + 1.00 �9 1996 ESCOM Science Publishers B.V.

446

can be easily chained. These commands apply to data
held in the memory and provisions are made in the soft-
ware to directly handle 1D, 2D and 3D data sets. Gifa
includes all the usual basic processing functions for high-
resolution NMR data processing. These functions concern
Free Induction Decay (FID) preprocessing, spectral ana-
lysis of the FID and, finally, spectrum postprocessing and
analysis. 1D, 2D and 3D data sets are handled in an
equivalent manner by the software, and all the procedures
presented in this section can be applied to 1D, 2D as well
as 3D data sets.

Any apodisation function can be applied to the FID.
The classical ones (sine, squared sine, exponential, Gaus-
sian) are built-in commands of the program, and it is
possible to design and apply any other apodisation func-
tion by using the Gifa command language.

A complete set of Fourier transforms (FT) (Delsuc et
al., 1991; Delsuc, 1996) based on the fast Fourier trans-
form algorithm is available. Direct and inverse FT are
available for complex as well as real data sets. Direct and
inverse Hilbert transforms (Zolnai et al., 1990) are also
implemented. All kinds of 1D, 2D and 3D data sets (com-
plex, real and hypercomplex) can thus be processed in a
straightforward manner.

Phasing is possible on hypercomplex and complex spec-
tra, but also on real spectra with the use of the Hilbert
transform. Automatic phasing is implemented in Gifa by
the APSL method (Heuer, 1991).

We should also mention several baseline correction
modules. One is based on a spline fitting of the data,
another is built from a statistical module for the separa-
tion of the baseline from a set of lines (Rouh et al., 1993).
Any basic processing command can be applied indepen-
dently on each spectral axis.

Spectral enhancement and analysis
A maximum entropy module (MaxEnt) (Delsuc, 1989;

Delsuc et al., 1991; Robin et al., 1991) is present in the
Gifa program. Several convergence algorithms are inclu-
ded: the original algorithm by Gull and Daniel (1978),
with the possibility to use the correction from Wu (1984),
a regular conjugated gradient, and an optimised fixed-
point algorithm (Delsuc, 1989). Gifa actually stands for
the acronym of 'Generalised Iterative Fixed-point Algo-
rithm', the name of this optimised fixed-point algorithm.
This module implements 1D and 2D deconvolution, multi-
channel deconvolution (Sibisi, 1983), and 1D and 2D J-
deconvolution (Delsuc and Levy, 1988).

A comprehensive Linear Prediction (LP) (Malliavin et
al., 1991) module, including the Burg (Ni and Scheraga,
1986), LP-SVD (Barkhuijsen et al., 1985) and forward
and backward methods (Delsuc et al., 1987) is also avail-
able. Due to the very modular structure of this module,
and the command approach of the program, Gifa permits
the use of LP in many different situations, such as miss-

ing points reconstruction, baseline correction, spectral
analysis, the Cadzow procedure (Cadzow, 1988; Brissac
et al., 1995), water line suppression (Marion et al., 1989)
and analysis of NOESY buildup curves (Malliavin et al.,
1992; Reisdorf et al., 1992).

With the combined use of the extraction tool and the
inverse Fourier transform, it is possible to apply the time-
consuming techniques such as MaxEnt or LP on a small
region of the spectra, thus minimising the computation
time and the memory burden.

A simple peak-picker and integrator (Stoven et al.,
1989) are available for 1D, 2D and 3D experiments.
They are completed with a comprehensive line-fitter,
which permits an independent fit of each peak parameter
for Gaussian or Lorentzian lines. The line-fitter is built
onto a Levenberg-Marquardt minimiser (Press et al.,
1988).

All the information gathered by the peak-picker, the
integrator or the line-fitter is stored into an internal peak
table. Several commands are available for handling, dis-
playing, modifying and storing this peak table.

Data management
Within Gila, the working area is divided into three

independent buffers devoted respectively to 1D, 2D and
3D processing. These buffers are statically allocated, and
can handle only one data set at a time. Commands issued
by the user relate to the current 'working' buffer, which
can be selected and changed at any time by the user. The
three buffers are contiguous in memory, thus permitting
to join them when a larger data set must be handled. For
instance, if no 3D processing has to be done, the 3D buf-
fer can be joined to the 2D buffer to allow processing of
a larger 2D data set. In the same way, parts of these buf-
fers are allocated when operations needing large tempor-
ary buffers have to be performed.

Data handling has been designed to optimise the speed
of processing. Many processing commands, like apodisa-
tion, FT, phasing or baseline correction, are thus realised
in-place onto the working buffer. Indeed, this approach
allows to minimise the memory needs and to optimise the
use of the processor cache. However, some commands
(e.g. projection commands, plane or row extraction) may
deposit the result of their operation in another buffer
than the working one.

Several other data buffers are also available to the user
to store information or data independently of the main
buffers: (i)there is an additional, multi-purpose buffer,
which can hold a 1D, 2D or (small) 3D data set, and
which can only be stored, retrieved and added. This multi-
purpose buffer serves as an off-place location, which may
be very useful in certain processing steps; (ii) the com-
mand language (see below) also provides the user with
variables and arrays in which any kind of data type can
be stored; and finally (iii) a support to the UNIX data-

447

; this macro takes two arguments :
; - the index of a peak in the internal peak-table
; - a list of 2D experiment names,
; as a list of blank separated names, eg: "expl exp2 exp3"
; it generates a file called "result" which contains the exact coordinates
; of the peak and its integral value in each experiment

; first, the user interface part
if ($DIM I= 2) e r ro r "Works only in 2D" ; check current state

message "Enter peak index" ; message to the user
; user gets prompted with message line, only if
; no argument is available on the calling line

set index = $_ ; $_ corresponds to the next argument
if ($index > $NBPK2D) \ ; $NBPK2D is the number of peaks

error "Index outside peak-table limits" ; in the 2D peak-table

message "Enter list of experiment (within quotes)"
set file_list = $_

set out_file = "result"
open $out_file

; then sets-up the output file

; gets coordinates of selected peaks, $PK2D_FXF[] contains the peak coordinates,
; itop(index,dimension,axis) is the index_to_ppm convertion function
set ppmfl = (itop($PK2D_F1F[$index],2,1))
set ppmf2 = (itop($PK2D_F2F[$index],2,2))
fprint $out_file ("Peak #"; $index; "at"; $ppmfl; $ppmf2)

; loops over file names
while (Stile_list s!)

set tile = (head(Stile_list))
set file_list = (tail(Stile_list))
read Stile
integ % %

fprint $out_file \

; while there are experiments to process
; head(string) gets the first word of 'string'
; tail(string) gets everything but the first one
; read in data-set
; realizes the integration, using the current
; peak table and the default parameters

("experiment :"; Stile; "intensity :";$PK2D_A[$index])
; PK2D_A[] is the computed volume of the peak

endwhile

close $ont_tile ; close output file
exit ; and returns

Fig. 1. An example of a macro file, performing the integration of a given peak for a series of 2D experiments. This macro shows several program-
ming constructions available in the control language, such as user variables, passing of arguments, access to internal parameter values, creation
and access to an output file, string manipulation (head and tail commands) and control structures. Comments in the first part of the macro are
used for automatic help generation. Note that the \ character marks a line continuation.

base format (DBM) is provided and will be described
below in greater detail .

When the static memory buffers appear to be too small

to handle a given da ta set, it is possible to work on a file
rather than in memory. This is per formed through a
special cache memory system that is implemented into the
Gifa program. The cache memory works by subdividing
the da ta set into blocks or submatrices, which tile the
da ta set. When accessing a par t of the da ta set, only those
blocks that actually conta in informat ion are loaded from
disk into the cache memory. The cache memory manages
to keep these blocks in memory in an opt imal fashion, by
keeping t rack of their usage. The least recently used blocks

are discarded first. Enough memory is al located in the

cache memory for the blocks to insure at least room for
the largest row for a 2D data set, and the largest plane in
the case o f a 3D data set. The blocks located in the cache

memory are accessed through a hash table system. This
set-up permits a very fast access to the da ta already stored

in the cache memory, and an opt imal access to the file,
whether sequential access to the file is used or not. Some
special commands permit the user to access regions o f the
da ta set, and to load rows or planes from the da ta set. A
set of macros has been writ ten in order to process da ta
sets through the cache memory system, but keeping the
regular in-memory syntax.

448

; This macro creates a form box which permits to modify the

; parameters of the contour-mode display window.
; The user can - open / close the contour-mode display window
; - choose to display positive / negative / both sides
; - change the number and spacing of contour levels.

;Preset parameters:

if (SCDISP2D==I) then ;$cdisp2d describes graphic states.
set cdef = on

else
set cdef = off

endif
if ($SIGN==I) then ;Describes which levels are displayed

set pudef = positive ; (positive, negative, both)
eisif ($SlGN == 0) then

set pndef = both
else

set pndef = negative
endif
;Build the form
formbox "Display control" \

"dispcont_doit $cont $posneg $1ev Slog" \
"Contour Display (cdisp2d)" \

enum "on,off'' cont $cdef \

exit

;Callback

;Define fields
"Display mode (sign)" \

enum "positive,negative,both" posneg $pndef \
"Number of levels (level)" int lev $LEVEL \
"Level Algo : (loga)" real log $LOGA \
"(x-1 : equidistant; x>l : by power of x)" message \
* ; * is end of list

Fig. 2. Example of a set of macros that creates a form box with different editable fields, controlling the state of the contour-mode display window.
(a) Text of the macro dispeont, which builds the control form box. After scanning the environment (described by the values of $CDISP2D and
$SIGN) in order to set the default values for the variables, the form is built. The first argument of the command form box is the name of the
window itself; the second argument is the callback associated with the action button, which here consists in calling the associated macro disp-
eont_doit; subsequent arguments define the different entries of the box. The fields are here of three kinds: pop-up menu for the selection in a list,
typed field, and message field; other kinds of field are available (e.g., action button, text, or separator). (b) The associated dispcontdoit macro,
which gets and tests arguments before setting the internal Gifa variables and refreshing the display. (c) The resulting form is a static graphic box
with an action button 'Apply', with which the macro command dispcontdoit is associated.

The command language
A complete command language is embedded in the

Gifa user interface in order to create macros, which can
be used by the user exactly as native Gifa commands. All
commands, as well as other macros, can be called during

a macro execution.
There is suppor t for all the structures needed for a full-

fledged computer language. User variables are available
and can be global or local. Variables are untyped; they
can store indiscriminately any type of data: integers, reals,
character strings or composi te information. The da ta
typing is forced by the kind of opera t ion that is applied.
Users can also build associative arrays (much in the man-

ner that the U N I X program awk does). Associative ar-
rays are very convenient for handl ing any kind of struc-
tured information, and can for instance be used to store
and handle assignment information. Evaluat ion of math-
ematical, logical, and string expressions is possible. In
addi t ion to the set of opera tors and functions needed by
a scientific p rogramming language, there is an extended
set of functions permit t ing to access internal parameters
of the program (e.g., the size o f the current da ta set, or
the state of a graphic window), as well as to compute
quantit ies 'na tura l ' to N M R (e.g., unit conversion be-
tween ppm, Hz and spectral index). Several control struc-
tures are available for macro programming, such as loops

b
; macro dispcont doit
; called by the form built with the dispcont macro

set eont = $_ ; Get arguments. $_ is for "next argument"
set posneg = $_
set lev= $_
set log = $_
;Process:
if ($cont s= "off") then

edisp2d 0
else

if ($1ev != $LEVEL) then
if ($1ev < 1 I $1ev > 64) error "Wrong number of levels"
level $1ev

endif
if (Slog != SLOGA) then

if (Slog < 1) error "Loga should be >1"
loga Slog

endif
edisp2d 1

endif
if ($posneg s= "positive") then

sign 1
elsif ($posneg s= "negative") then

sign -1
else

sign 0
endif
exit

449

Fig. 2. (continued).

and tests. In order to give Gifa the capability of handling
databases, a module has been implemented that permits
to access DBM files. DBM is a standard format for flat
databases, available in the UNIX OS. Access to DBM
files can thus be achieved from any other programming

environment. In Gifa, database entries are handled by
binding them to pseudo-associative arrays, so there is no
additional syntax needed. As an illustrative example, Fig.
1 presents a typical macro file using the main features of
the command language.

450

TABLE 1
DIFFERENT PROCESSING TIMES OBSERVED USING THE
Gifa PROGRAM

Processing Time (s)

protocol SUN IBM SGI HP

2D 17.5 12.6 10.5 7.5
3D 1064 329 193 172

The following machines were used: SUN: Sparc 10-30 with the SunOS
4.1.3 operating system; IBM: RS6000-560 with the AIX V3 operating
system; SGI: Silicon Graphics R4000 at 175 MHz, with the IRIX 5.3
operating system; HP: Hewlett-Packard 735 at 99 MHz, with the HP-
UX 9.01 operating system. Two processing protocols were used for
these benchmarks. 2D is an in-memory processing of a 512 • 2048 2D
data set, consisting of an exponential apodisation in t2, followed by
real Fourier transform, phase correction, reduction to real type and
five-point spline baseline correction, and a sine-bell apodisation in tl,
followed by one level of zero-filling, real Fourier transform and phase
correction. 3D is a 256 • 64 • 512 3D NMR data processing with sine-
bell apodisation, zero-filling, complex Fourier transform, phasing and
reduction to real type in all three dimensions, a linear baseline correc-
tion being applied on the F3 axis.

A graphic user interface
The Graphic User Interface (GUI) in an NMR pro-

cessing program may be considered to be composed of
two independent parts. The first part concerns the display
of the NMR data set (FID and spectra), while the second
is devoted to interaction with the user for commands and
controls.

In Gifa, the content of the working buffer (1D, 2D or
3D) is displayed to the user by several graphic windows.
Following the modular conception of Gifa, each graphical
window presents only one object and all windows are
optional. All windows are interactive: they can be moved,
resized, closed and iconized. The user chooses to visualise
1 D, 2D and/or 3D spectra with the help of specific com-
mands. 2D data sets can be displayed either in bit-map
mode or as a contour plot. 3D data sets can be viewed as
series of 2D planes as well as real 3D contours. It is also
possible to interact directly with the data displayed on the
graphic. The user can scale data, zoom in on spectra, or
shift to different parts of spectra with the help of the
mouse or with a set of specific commands. The current
zoomed window is always shown on a small and complete
spectrum representation, displayed on the standard inter-
face. The spectral coordinates in different units (index,
ppm, Hz or s) may be easily displayed. It is also possible
to add text or graphic annotations to any of the Gifa
graphic windows. In addition to the interactive windows,
any window can be duplicated at any time and its content
'frozen' in order to keep the display of the data at differ-
ent stages of the processing. Finally, it is possible to super-
impose different spectra on the same display.

The part of the GUI that permits the user to interact
with the software has been designed to be modular and
flexible. There is no predefined GUI, but rather, a possi-
bility has been built into the command language to define

elements of the interface. There are three primitive com-
mands for creating menus, dialogue boxes and forms.
Menus are composed of a series of buttons, each one
associated with a command (or a series of commands) of
the Gifa language. The dialogue boxes associate editable
graphic fields with user variables, permitting extensive
user interaction. Any change in the content of any edit-
able field is readily echoed to the associated user variable.
Provision is made for creating specific fields: a typed field
(string, real, integer), associated with syntax checking;
selection in a list, associated with pop-up menus; and file
entry, associated with a standard file selection interface.
Forms are static versions of dialogue boxes. They also
present the user with a series of editable fields, but there
is an additional action button associated with a Gifa
command line, in which the values of the field can be
used as parameters. Forms permit to build any kind of
control boxes, which can even be resident on the screen.
Figure 2 shows an example of such a form, designed for
the control of the graphic display. Finally, there is also
the possibility to create alert boxes and error boxes. It
should be noted that this GUI is completely optional in
Gifa, and that the program can be fully utilised in a non-
graphic environment, and actually even in batch mode.

Additionally, any display can be plotted in HPGL or
PostScript format. Commands permit to control the size
and the rotation of the plot on the page. Commands are
also available to add text, titles, annotations and axis
labelling to the plots.

File input / output
The standard Gifa file format is divided into two dif-

ferent parts: the header and the data parts. The header
holds all the parameters of the data in text format. It can
be displayed, modified and expanded. The data area is
divided into data blocks. It is possible to access any re-
gion of the data set with a minimal number of disk acces-
ses.

One of the problems the modern NMR spectroscopist
has to deal with is the transfer of NMR data sets between
different computer programs. In this respect, several file
formats are directly available for reading and some util-
ities exist to reformat files. Moreover, the data format
specific to the Gifa software has been made public-do-
main, as has the source code of the library giving access
to these data files.

Results and Discussion

Following the growth of multidimensional NMR spec-
troscopy, several NMR data processing programs have
recently been developed, such as FELIX (Biosym Tech-
nologies Inc., San Diego, CA, U.S.A.), NMRView (John-
son and Blevins, 1994), PROSA (Giintert et al., 1992) and
NMRPipe (Delaglio et al., 1995). Each one of these soft-

ware systems is widely used and appreciated for several
well-developed and highly efficient specific tasks. We wish
to show in this section that many Gifa features are very
competitive with the other programs.

The Gifa data processing package is quite developed
and includes all the basic processing tools as well as soph-
isticated spectral enhancement and analysis modules. Fur-
thermore, the data access is optimised for all kinds of
processed data. Indeed, the Gifa software has been de-
signed in order to perform in two complementary modes.
In contrast with most NMR programs that process data
on disk files, the standard way of working on an NMR
data set with Gifa is to hold all the information in mem-
ory. This method permits very fast processing of small
everyday experiments. Nevertheless, the development of
2D and 3D experiments has increased the size of the
available NMR information. On-file processing has be-
come a requisite and the cache memory system is devised
for this purpose. Its design permits one to minimise disk
accesses, resulting in speed increase for processing of large
files. Generally, whatever the data set size, Gifa is opti-
mised and uses the faster algorithms available and the ap-
propriate compilation options. A comparison of the pro-
cessing speed on different computers is shown in Table 1.

Another advantage of the Gifa software is the versatile
and programmable graphic user interface. As described

451

above, all the graphic windows are optional, and Gifa is
built in a modular way. This modularity permits the user
to tailor the graphic environment and macro library to fit
specific needs. The graphic interface and data processing
part of Gifa can easily be expanded. The graphic primi-
tives associated with the command language allow one to
build a rich and versatile user interface or to extend it
with new functionalities (additional buttons in order to
run new commands, message boxes for the dialogue with
the user, configuration forms). The start-up file can be
modified according to user requirements.

In order to facilitate the first contact with the software,
a default graphic environment has been written and is
invoked during the start-up. For the novice user, this
default graphic environment can be used in order to do
most of the usual processing. It includes the basic com-
mand set for 1D, 2D and 3D processing, as well as sup-
port for displaying, plotting, peak-picking, integration,
peak-fitting and assignment. Figure 3 shows the default
graphic environment with 1D and 2D spectra, and the
menus and zoom control boxes.

A high-level command language is rarely available in
the other NMR processing packages. The Gifa command
language is a structured programming language (with
function calls), which gives access to shell commands and
to high-level data structure organisation such as DBM

I

' ~ . t ,

1

I ;

Fig. 3. The default graphic environment as invoked during start-up of Gifa. All the basic commands can be run from this graphic environment.
The control box called 'Zoom Box' permits interaction with the graphic window. The data are currently displayed in a contour plot 2D window
and in a 1D window. The small vignet seen in the 'Zoom Box' is a view of the complete data set held into the 2D buffer, the square in it indicates
the current zoom window.

452

databases or associative arrays. It is possible to write
commands and to extend the software by adding new
data-processing functionalities. For instance, many tools
such as the peak-picker and line-fitter graphic interface,
the Cadzow procedure and the automat ic phasing have
been written in the Gifa command language. Another
striking example of this extensibility is given by the as-
signment module, which uses all the functionalities o f the
macro language: the assignment information is stored
hierarchically in D B M databases, and the user interacts
with the assignment data through standard dialogue and
form boxes written in the command language.

As a result of the modular conception of the program,
there are different ways of interacting with the software.
The user may choose between a graphic c o m m a n d inter-
face (buttons, forms and dialogue boxes), a command line
(prompt level) or a language interface (macros). Finally,
according to the internal organisation, it is very well pos-
sible to run the program in batch mode when a long pro-
cessing time is expected.

Some on-line help functionalities are available. Gifa
includes explicit error messages, a complete on-line help
function for every command and a comprehensive inter-
active manual, which explains and illustrates the features
of the Gifa commands. A history file (log file) is available
in which all the input generated by the user and all the
output generated by the program are journalised. Addi-
tionally, a complete documentat ion has been written.

Conclusions

The Gifa N M R processing program provides the user
with a comprehensive set o f optimised processing tools.
Furthermore, the command language and the graphic
primitives provide Gifa with capabilities close to those
found in an application generator. Because of these fea-
tures, Gifa is a very flexible software system, which does
not impose any work method on the user, but can be
adapted to all purposes and can be successfully used by
the novice as well as the experienced user. Moreover, the
software can be easily extended to new processing methods
not yet implemented and it is even possible to use it in
domains external to N M R data set processing.

Because of the software techniques used, the program
does not depend on any special hardware and can be used
on most U N I X computer systems,

The program Gifa is now used by about 60 registered
users, located in many different countries. It is possible to
download the Gifa program through anonymous ftp
(ftp://www.cbs.univ-montpl.fr). The program is free for
academic laboratories, after signing a licence.

Acknowledgements

We would like to acknowledge all the people who have

been involved in the development of Gifa since its very
first version, most notably: M. Robin, A. Rouh, G. Salni-
kov, V. Stoven and C. van Heijenoort. We also thank E
Bontemps, M.A. Cremonini and E Penin for giving
access to their computers. We acknowledge the French
M.E.N.E.S.R.I.P. for grant ACC-SV13, project ' infobio-
sud'.

References

Barkhuijsen, H., De Beer, R., Boy6, W.M.M.J. and Van Ormondt, D.
(1985) J. Magn. Reson., 61, 465-481.

Brissac, C., Malliavin, T.E. and Delsuc, M.A. (1995) J. Biomol. NMR,
6, 361-365.

Cadzow, J.A. (1988) IEEE Trans. Acous. Speech Signal Proc., 36, 49-
62.

Delaglio, E, Grzesiek, S., Vuister, G., Zhu, G., Pfeifer, J. and Bax,
A. (1995) J. Biomol. NMR, 5, 277-295.

Delsuc, M.A., Ni, F. and Levy, G.C. (1987) J. Magn. Reson., 73, 548-
552.

Delsuc, M.A. and Levy, G.C. (1988) J. Magn. Reson., 76, 306-315.
Delsuc, M.A. (1989) In Maximum Entropy and Bayesian Methods,

Cambridge 1988 (Ed., Skilling, J.), Kluwer, Dordrecht, The Nether-
lands, pp. 285 290.

Delsuc, M.A., Robin, M., Van Heijenoort, C., Reisdorf, C.B., Guittet,
E. and Lallemand, J.Y. (1991) In Computational Aspects of the
Study of Biological Macromolecules by NMR Spectroscopy, Vol. 225
(Eds. Hoch, J.C., Poulsen, F.M. and Redfield, C.), Plenum Press,
New York, NY, U.S.A., pp. 163-174.

Delsuc, M.A. (1996) In Signal Treatment and Signal Analysis in NMR,
Vol. 19 (Ed., Rutledge, D.N.), Elsevier, Amsterdam, The Nether-
lands, pp. 374-406.

Gull, S.E and Daniell, G.J. (1978) Nature, 272, 686-690.
Giintert, P., D6tsch, V., Wider, G. and Wiithrich, K. (1992) J. Bio-

mol. NMR, 2, 619-629.
Heuer, A. (1991) J Magn. Reson., 91, 241-253.
Johnson, B. and Blevins, R. (1994) J. Biomol. NMR, 4, 603-614.
Malliavin, T.E., Delsuc, M.A. and Lallemand, J.Y. (1991) J. Magn.

Reson., 94, 630-634.
Malliavin, T.E., Delsuc, M.A. and Lallemand, J.Y. (1992) J. Biomol.

NMR, 2, 349-360.
Marion, D., Ikura, M. and Bax, A. (1989) J Magn. Reson., 84, 425-

430.
Ni, E and Scheraga, H.A. (1986) J. Magn. Reson., 70, 506-511.
Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T.

(1988) Numerical Recipes in C, the Art of Scientific Computing,
Cambridge University Press, New York, NY, U.S.A., pp. 523-528.

Reisdorf, C., Malliavin, T.E. and Delsuc, M.A. (1992) Biochimie, 74,
809-813.

Robin, M., Delsuc, M.A., Guittet, E. and Lallemand, J.Y. (1991) J.
Magn. Reson., 92, 645-650.

Rouh, A., Delsuc, M.A., Bertrand, G. and Lallemand, J.Y. (1993) J.
Magn. Reson., A102, 357-359.

Sibisi, S. (1983) Nature, 301, 134-136.
Stoven, V., Mikou, A., Piveteau, D., Guittet, E. and Lallemand, J.-Y.

(1989) J. Magn. Reson., 82, 163-168.
Wu, N.I. (1984) Astron Astrophys., 139, 555-557.
Zolnai, Z., Macura, S. and Markley, J. (1990) J. Magn. Reson., 89,

94-101.

